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ABSTRACT

The spatial properties of the solar magnetic field are crucial to decoding the physical processes in the solar interior and their inter-
planetary effects. However, observations from older instruments, such as the Michelson Doppler Imager (MDI), have limited spatial
or temporal resolution, which hinders the ability to study small-scale solar features in detail. Super resolving these older datasets is
essential for uniform analysis across different solar cycles, enabling better characterization of solar flares, active regions, and magnetic
network dynamics. In this work, we introduce a novel diffusion model approach for Super-Resolution and we apply it to MDI magne-
tograms to match the higher-resolution capabilities of the Helioseismic and Magnetic Imager (HMI). By training a Latent Diffusion
Model (LDM) with residuals on downscaled HMI data and fine-tuning it with paired MDI/HMI data, we can enhance the resolution of
MDI observations from 2"/pixel to 0.5"/pixel. We evaluate the quality of the reconstructed images by means of classical metrics (e.g.,
PSNR, SSIM, FID and LPIPS) and we check if physical properties, such as the unsigned magnetic flux or the size of an active region,
are preserved. We compare our model with different variations of LDM and Denoising Diffusion Probabilistic models (DDPMs), but
also with two deterministic architectures already used in the past for performing the Super-Resolution task. Furthermore, we show
with an analysis in the Fourier domain that the LDM with residuals can resolve features smaller than 2", and due to the probabilistic
nature of the LDM, we can asses their reliability, in contrast with the deterministic models. Future studies aim to super-resolve the
temporal scale of the solar MDI instrument so that we can also have a better overview of the dynamics of the old events.
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1. Introduction

Understanding the spatial and temporal properties of the so-
lar magnetic field is critical to decoding the physical pro-
cesses within the solar interior, its atmosphere, and its impact
on Earth (Wiegelmann et al. 2014; Wei et al. 2021; Wang et al.
2023; Yadav & Kazachenko 2023; Georgoulis et al. 2024).

The magnetic field is accurately measured in the solar photo-
sphere, and several space missions have observed it with differ-
ent spatial and temporal resolutions. The higher the spatial res-
olution, the better we can characterise the morphology of small-
scale features, while the higher the temporal resolution the easier
will be to understand the evolution of their physical processes
(Wiegelmann et al. 2014). In addition, studying the solar pho-
tosphere in different solar cycles can be beneficial to truly un-
derstand the properties of the magnetic network (Li et al. 2019).
However, despite the amount of data that covers different solar
cycles, they come from different instruments with different spa-
tial and temporal resolutions, and the older the instruments are,
the lower their capabilities. Consequently, it is difficult to per-
form an overall analysis due to the lack of uniformity. For this
reason, having the possibility to translate the data seen by an
older telescope as a new telescope would have seen them can be
beneficial for overcoming the hardware limitations of the past
(Liu et al. 2012; Virtanen & Mursula 2019; Kinakh et al. 2024).

In deep learning, Super-Resolution refers to enhancing the
resolution of images by increasing their spatial dimensions
(Su et al. 2025). The key objective is to predict missing high-
frequency details that are not present in the low-resolution
⋆ Email address: francesco.ramunno@fhnw.ch

version. Super-Resolution has been widely analysed in the
field of Computer Science in the last decade (Saharia et al.
2021; Rombach et al. 2021; Pernias et al. 2023), resulting in
a vast amount applications in astronomy (Kinakh et al. 2024;
Jarolim et al. 2024) since it can be used not only to increase the
spatial dimensions but to improve the image under various noise
conditions (Armstrong & Fletcher 2021; Chaoui et al. 2024).

An excellent science case for applying Super-Resolution is
related to two space-based instruments, the Michelson Doppler
Imager (Scherrer et al. 1995, MDI) on-board of the Solar and
Heliospheric Observatory (SOHO) and the Helioseismic and
Magnetic Imager (Scherrer et al. 2012, HMI) on-board of the
Solar Dynamics Observatory (SDO). The MDI/SOHO instru-
ment launched in 1995 and operative up to April 2011 has
observed the photosphere during Solar Cycle 23 with a spa-
tial resolution of 2"/pixel and a temporal resolution of 96 min-
utes for the full disk Line of Sight (LoS) magnetograms. The
HMI/SDO instrument launched in 2010 and still operating is ob-
serving the photosphere during Solar Cycle 24 and Solar Cy-
cle 25 with a spatial resolution of 0.5"/pixel and a temporal
resolution of 12 seconds for the full disk LoS magnetograms.
Various attempts were made to uniform the dataset provided
by the two instruments (Rahman et al. 2020; Xu et al. 2024;
Munoz-Jaramillo et al. 2024) in a deterministic behaviour by
training the model with a pixel-wise loss. Unfortunately, the
Super-Resolution problem is ill-posed, and each low-resolution
(LR) image corresponds to infinite high-resolution (HR) images.
Thus, training a model to minimize the mean squared error be-
tween predicted and target images for a set of examples, results
in output images that represent an average prediction over the
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Fig. 1: Example of a training pair composed of the ground truth image, its downscaled version, and the resulting uspcaled image
which is obtained by replicating each pixel values of the downscaled image by 4. The latter image is provided as input to our model.
We refer to Section 2 for more details.

set of feasible predictions and therefore lack of fine-grained de-
tails (Bruna et al. 2016; Ledig et al. 2017a). Moreover, there is
no straightforward way to compute uncertainties on the output
of deterministic models.

Denoising Diffusion Probabilistic Models (DDPMs)
(Ho et al. 2020) have demonstrated high capabilities in Super-
Resolution (SR) tasks (Saharia et al. 2021) overcoming the
Generative Adversarial Networks (GANs) (Goodfellow et al.
2014) in terms of quality of the prediction and simplicity
of the training task (Dhariwal & Nichol 2021). DDPMs are
less prone to generate artefacts and it is possible to make use
of their probabilistic nature to determine an uncertainty on
the prediction, which is fundamental for scientific purposes
(Ramunno, F. P. et al. 2024a,b). Their stability arises from the
iterative generation during inference (Sun et al. 2023). However,
this rapidly increases computational demands with the image
size (Rombach et al. 2021). Therefore, it has been demon-
strated that it is possible to train DDPMs in a latent space of a
pre-trained autoencoder (Rombach et al. 2021) that reasonably
represents the data. This approach leads to a reduction of the
image size. Therefore, it allows implementing more complex
network architectures with limited computational burden, and
it permits the generation of images of the same size as the
HMI/SDO telescope, 4096 × 4096 pixels with 0.5"/pixel as
spatial resolution.

In this work, we train a latent diffusion model on down-
scaled HMI/SDO data, with a spatial resolution of 2"/pixel, to
super-resolve them into the high-quality HMI/SDO data with a
spatial resolution of 0.5"/pixel. Our novel method allows super-
resolving features smaller than 2", a capability not found in other
deterministic models. We also develop a technique to determine
the reliability of these predicted features, making them more rel-
evant from a physical point of view. This opens up the exciting
possibility of super-resolving the data provided by MDI between
1995 and 2010 and studying the Solar Cycle 23 with the same
resolution as HMI/SDO. Therefore, we now have the unique op-
portunity to study more eruptive events (in addition to those of
Solar Cycle 24) with a higher spatial resolution. In the future,
we are interested in super-resolving the temporal resolution of
MDI/SOHO, which would lead to a better understanding of the
dynamic properties of the features on the photosphere.

This paper is organised as follows. In Section 2 we intro-
duce the datasets used. In Section 3 we introduce the Super-

Resolution problem and explain the latent diffusion model to-
gether with the palette technique for image-to-image translation
and the two deterministic approaches considered. In Section 4
we analyse our setup and our experiments; we discuss the eval-
uation metrics in Section 5 and we discuss the results in Section
6. In the end we apply the model to super-resolve MDI magne-
tograms and introduce a technique in the Fourier space to vali-
date our results in Section 7 and we conclude in Section 8.

2. Dataset

We consider data from two space-based instruments: the
HMI/SDO (Scherrer et al. 2012) and the MDI/SOHO
(Scherrer et al. 1995). There is only a small time window
in which HMI and MDI operated simultaneously from May 1
2010, to April 11 2011, with 4126 pairs of MDI and HMI data.
To ensure more diversity in the training dataset and not only use
data recorded in this short time range, we pre-train our model
to a dataset made of only HMI data and then finetune it on
the dataset shared among the two instruments. We construct a
dataset of HMI images recorded between 2013 and 2019. For
each image, we create its downscaled version, just averaging
every 4 pixels and obtaining from a 4096 × 4096 pixel image a
1024 × 1024 pixel image. The downscaling procedure allows us
to obtain a 2”/pixel spatial resolution, which reflects the spatial
resolution of the MDI instrument. The final dataset consists
of 43912 paired images of downscaled and actual HMI data.
The image values are constrained to a range between -3000
and +3000 G, as the instrument’s dynamic range limitations
only become significant near 3000 G (Hoeksema et al. 2014).
Finally, the data are normalized to a range between -1 and 1.

3. Background

This section briefly introduces the Super-Resolution problem
(Su et al. 2025) and analyses its issues. We explain the Palette
approach (Saharia et al. 2021) that we used to condition our
model, and finally, we describe the functioning of the latent dif-
fusion model based on the approach suggested in Rombach et al.
(2021).
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(a) Training step

(b) Inference step

Fig. 2: (a) The top image demonstrates the training process of the Latent Diffusion Residual Model (LDM) for image Super-
Resolution. In this process, both the Input and Ground Truth images are passed through an Encoder; subsequently, the residual
(difference) between them is calculated and injected with noise with a random magnitude determined by the timestep parameter
t. This noisy latent representation is then processed by the LDM, which predicts the injected noise. Finally, Mean Squared Error
(MSE) loss is computed between the predicted noise and the original injected noise. (b) The bottom image illustrates the inference
algorithm of the LDM for Super-Resolution. Here, the Input is encoded and concatenated channel-wise with Gaussian noise which
corresponds at t=1000. The prediction process iterates 1,000 times, refining the residual prediction, which is ultimately added back
to the encoded input image. The result is then decoded to produce the super-resolved image.
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Fig. 3: Detailed visual breakdown of the U-Net network architecture, consisting of convolutional layers, max-pooling, downsam-
pling, self-attention, and upsampling layers, which enhance the image resolution by leveraging both spatial and feature-based
processing techniques.

3.1. Super resolution

The goal of image Super-Resolution (Su et al. 2025) is to trans-
form a Low-Resolution (LR) image into a High-Resolution (HR)
image, recovering the missing high frequency details.

Given a LR image x ∈ Rŵ×ĥ×c, where ŵ, ĥ and c are re-
spectively the height, the width and the number of channels of
the image, the goal is to generate the corresponding HR image
y ∈ Rw×h×c, where ŵ < w and ĥ < h. The relationship is repre-
sented by a degradation mapping:

x = D(y;Θ), (1)

whereD : Rw×h×c → Rŵ×ĥ×c is generally unknown, and Θ is the
set of degradation parameters governing this mapping. The goal
of a SR model is to determine the inverse mapping of D with a
parametrized function ŷ = fθ(x) = Rŵ×ĥ×c → Rw×h×c, where θ
indicates the array of parameters. The optimal parameter values
are determined by solving:

θ∗ = arg min
θ
L( fθ(x), y), (2)

whereL represents the distance between the predicted HR image
and the actual HR image.

The complexity of the SR tasks lies in their strongly ill-posed
nature, as several HR images correspond to the same LR image.
Traditional techniques use an average distance L, such as the
MSE in the pixel space, which leads to predicting an average
of all the possible HR-predicted images struggling to replicate
high-frequency details (Bruna et al. 2016; Ledig et al. 2017a).
DDPMs address this problem since the L is not related to the
pixel domain (Ho et al. 2020; Ramunno, F. P. et al. 2024a). In-
deed, they do not predict the SR image directly, but the noise to
be removed for obtaining the SR image. In addition, they are in-
herently probabilistic, enabling the possibility to model the prob-
ability distribution of all the possible HR images that correspond
to the input LR image instead of predicting an average of those.

3.2. Palette approach

DDPMs (Ho et al. 2020) transform samples drawn from a stan-
dard Gaussian distribution into samples from the empirical data
distribution through an iterative denoising process. Conditional
diffusion models (Ho & Salimans 2022) extend this approach by
conditioning the denoising process on an input signal, thus en-
abling the generation of data based on the provided input. An
example of conditional diffusion models are the Image-to-image
diffusion models, which have been already applied for Super-
Resolution tasks (Saharia et al. 2021; Saharia et al. 2021).

During training, the actual HR image y is used to generate
a noisy version, denoted as ỹ. This noisy version is then com-
bined with the LR image x, and the resulting combined images
are fed into the network to predict the noise added to the HR
input image y. At inference time, the process starts with a pure
Gaussian noise image, which is combined with the LR image
x. The model is then used iteratively to produce the final pre-
dicted HR image. For further details, refer to the description in
Saharia et al. (2021).

3.3. Latent Diffusion Model

High resolution image synthesis is dominated by likelihood-
based models (Ho et al. 2020; Song et al. 2021) and DDPMs
have shown impressive results in the various domain of image
synthesis, such as image generation, image-to-image translation
and Super-Resolution (Saharia et al. 2021; Kingma et al. 2023).
These models, being based on likelihood estimation, avoid the
issues of mode collapse and unstable training that are com-
mon in GANs (Dhariwal & Nichol 2021). However, the mode-
covering nature of diffusion models, while effective in prevent-
ing mode collapse, often results in an over-allocation of capacity
and computational resources to capturing imperceptible details.
In addition, the need for up to thousands iterative steps during
inference makes makes these models both slow and computa-
tionally expensive. To overcome this limitation, Rombach et al.
(2021) presented for the first time the idea of training a DDPM
not in the high-dimensional pixel space, 4096×4096 pixels for
the case of HMI data, but in a latent space of an already pre-
trained autoencoder (AE). Since the AE model provides a lower-
dimensional representational space which is perceptually equiv-
alent to the data space, the diffusion model trained here are faster
both in training and in inference with the possibility of having
a more complex architecture backbone (Rombach et al. 2021).
Additionally, the latent space distribution is potentially less com-
plex and thus easier to model, even if equivalent to the data space
distribution. This variation of DDPMs is denoted as Latent Dif-
fusion Model (LDM). In the Appendix A there are more details
about the computational time with respect the classica DDPM
approach.

3.4. Enhance and Progressive models

In the past, various attempts have been made to achieve
the Super-Resolution task from MDI to HMI. These ap-
proaches used classical neural networks with convolutional
layers, which are deterministic by nature. Deterministic net-
works, in contrast to probabilistic models (e.g., diffusion mod-
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(a) (b)

(c) (d)

Fig. 4: Comparison of image reconstruction metrics across varying downsampling factors α = 8, 16, 64 using a VQGAN-based
encoder-decoder architecture. The metrics include: (a) LPIPS to assess perceptual similarity, (b) PSNR for signal fidelity, (c) RMSE
for pixel-wise error, and (d) SSIM for structural similarity. There is a noticeable trade-off between compression and image quality,
with lower values of α resulting in better perceptual and structural performance, while higher α values lead to increased error and
degradation in perceptual metrics.

els), produce a single, specific output for a given input with-
out any randomness involved in the process. We compare
the probabilistic methods with two classical networks: En-
hance by Díaz Baso & Asensio Ramos (2018) and Progressive
by Rahman et al. (2020). We implemented and trained these net-
works from scratch. The input for both networks is a downsam-
pled image of 256×256 pixels, and the output is an image of
1024×1024 pixels. For further architectural details, see Figure
3 in Díaz Baso & Asensio Ramos (2018) for the Enhance model
and Figure 1 in Rahman et al. (2020) for the Progressive model.

4. Methodology and experiments

The experiments aim at finding the most suitable model to super-
resolve LoS magnetograms from the MDI instrument to the spa-
tial resolution of HMI. Specifically, we evaluate the reliability of
features smaller than 2”, which cannot be imaged by MDI.

The backbone of our diffusion model architectures
(Ho et al. 2020; Rombach et al. 2021) consists of a U-Net
(Ronneberger et al. 2015), which is an encoder-decoder network
with skip connections where the input shape and the output
shape are the same. We train the models for a total of 30 epochs
each using the AdamW (Loshchilov & Hutter 2019) optimizer,
the MSE as loss function, a learning rate of 3 × 10−4, a batch
size of 4 and one NVIDIA TITAN X graphics processing unit
(GPU). The model is implemented with the PyTorch framework
(Paszke et al. 2019). We use mixed precision during training.

Regarding hyperparameter selection, we did not employ au-
tomated optimization tools such as grid search or random search
due to the high computational cost and the empirical nature of
tuning diffusion models. Instead, we selected key hyperparam-
eters like the learning rate, batch size, and number of epochs
based on prior research and manual tuning. Specifically, we fol-

lowed the hyperparameter choices outlined by Ho et al. (2020),
which are widely adopted for denoising diffusion probabilistic
models. These settings have been shown to yield stable and reli-
able results for this class of models.

Additionally, we experimented with dynamic learning rate
strategies, such as cosine annealing and learning rate warm-up.
However, these approaches did not improve performance com-
pared to our fixed learning rate of 3 × 10−4, which resulted
in more stable convergence and overall better performance. To
monitor and track the training process, we utilized Weights and
Biases (Biewald 2020, Wandb), enabling us to visualize learning
curves in real time and apply early stopping to avoid overfitting.

The input and ouput images of our model have a size of
1024×1024 pixels. To create input images with a spatial resolu-
tion of 2”/pixel, we downgrade the HMI images as follows. We
randomly crop a 1024×1024-pixel region from a 4096×4096-
pixel full-disk LoS magnetogram. Then, we compute the av-
erage value over every 4×4-pixel block, resulting in an image
of 256×256 pixels. Finally, we upscale this image to a size
of 1024×1024 pixels by replicating each pixel 4 times with-
out interpolation. This process simulates a 2"/pixel resolution
crop of the HMI data, with the same image size as the original
1024x1024 crop at 0.5"/pixel resolution (Figure 1).

We train 4 diffusion model frameworks and 2 determin-
istic models with the same backbone architectures as pre-
sented in Díaz Baso & Asensio Ramos (2018) (Enhance) and
Rahman et al. (2020) (Progressive). All the models are trained
with the same input data, the difference among the 4 diffusion
frameworks is based on the usage of DDPM in the pixel space
(Ho et al. 2020; Ramunno, F. P. et al. 2024a,b) or in the latent
space (Rombach et al. 2021) and on the choice of predicting the
difference of the HR and the LR image or directly the HR image.
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(a) Ground Truth (b) Input

(c) LDM with residuals (d) LDM (e) Palette with residuals

(f) Palette (Saharia et al. 2021) (g) Enhance
(Díaz Baso & Asensio Ramos 2018)

(h) Progressive (Rahman et al. 2020)

Fig. 5: Comparison of different Super-Resolution techniques applied to the same HMI/SDO magnetogram. Panels (a) and (b)
represent the ground truth and the degraded input image, respectively. The next images display the results of different methods: (c)
Latent diffusion model with residuals, (d) Latent diffusion model without residuals, (e) Palette with residuals, (f) Palette without
residuals, (g) Enhance model (Díaz Baso & Asensio Ramos 2018), and (h) Progressive model (Rahman et al. 2020). This visual
comparison highlights the impact of the LDM technique with residuals which shows fine-scale details with respect to the other
reconstructions.

We aim to evaluate whether adopting a probabilistic ap-
proach provides more advantages compared to a deterministic
one by comparing diffusion model frameworks with determinis-
tic frameworks. Furthermore, we want to explore if working in
the latent space offers significant benefits over operating directly
in the pixel space. To do this, we analyze two frameworks that
function in pixel space using the Palette technique (Saharia et al.
2021), as described in Section 3.2, and two other frameworks
where the data is first encoded using a pre-trained Autoen-
coder (AE) before applying the Palette technique in the latent
space. The pre-trained autoencoder is provided by the Hugging
Face Diffusers library (von Platen et al. 2022). This model is a
Vector Quantized Generative Adversarial Network (VQGAN)
(Esser et al. 2021) and we use the pre-trained weights from Hug-
ging Face and the work by Rombach et al. (2021). Additionally,
we train the LDM on the non-quantized latent space. For both
latent space and pixel space generation approaches, we inves-
tigate whether it is more effective to predict the HR image di-
rectly or to predict the residual information between the LR and
HR images (i.e., the difference). As demonstrated in prior work
(Li et al. 2021; Whang et al. 2021), focusing on residual details
allows DMs to concentrate on finer features, which accelerates
convergence and stabilises training. A sketch of the training step
and the inference algorithm of our network is presented in Fig-
ure 2 and the architecture backbone is given in Figure 3. In Fig-

ure 2a we encode the downscaled image and the target image,
then we compute their difference (residual) in the latent space
and perturb the residual with gaussian noise with a magnitude
determined by the timestep t, a discrete parameter that varies be-
tween 0 and 1000. Afterward, we concatenate channel-wise the
noised residual with the encoded downscaled image and we pass
it through the U-Net backbone in Figure 3 with the aim of pre-
dicting the injected noise with the MSE loss.

5. Metrics

To comprehensively assess our model’s performance, we de-
fine two distinct sets of evaluation metrics. The first set origi-
nates from the computer science domain and focuses on mea-
suring the visual quality of the generated images. The sec-
ond set comes from the physics domain, evaluating the phys-
ical accuracy and reliability of the super-resolved images to
ensure that that they adhere to real-world physical principles.
The first set comprises the Peak-Signal-to-Noise-Ratio (PSNR),
the Structural-Similarity-Index Measure (SSIM) (Wang et al.
2004), the Learned Perceptual Image Patch Similarity (LPIPS)
(Zhang et al. 2018) and the Fréchet inception distance (FID)
Heusel et al. (2018). The PSNR measures the ratio between the
maximum possible power of a signal (the image) and the power
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Metric LDM RES
(Ours)

LDM
NO RES
(Rombach et al.
2021)

DDPM RES
(Ours)

DDPM
NO RES
(Saharia et al.
2021)

Enhance
(Díaz Baso & Asensio Ramos
2018)

Progressive
(Rahman et al.
2020)

PSNR ↑ 38.2 ± 2 29.2 ± 5 21.8 ± 6.6 17.2 ± 7.5 37.6 ± 4 38.8 ± 4
SSIM 0.9 ± 0.03 0.23 ± 0.21 0.14 ± 0.2 0.06 ± 0.13 0.92 ± 0.01 0.94 ± 0.01
LPIPS ↓ 0.03 ± 0.01 0.09 ± 0.04 0.63 ± 0.21 0.47 ± 0.17 0.19 ± 0.04 0.15 ± 0.02
FID ↓ 0.01 ± 0.0 0.38 ± 0.02 1.76 ± 0.12 3.0 ± 0.56 0.02 ± 0.01 0.02 ± 0.01
Unsigned Magnetic Flux (%) 7.52 ± 8.56 58.3 ± 27.9 73.3 ± 26.4 81.0 ± 25.0 51.1 ± 34.6 17.7 ± 12.0
AR Size (%) 8.0 ± 11.1 17.7 ± 19.3 67.8 ± 36.3 80.4 ± 36.6 28.5 ± 58.5 9.0 ± 16.7

Table 1: Comparison of metrics for different super-resolution methods.

Notes. The symbol ↓ indicates that a lower value is preferable for the metric, while the symbol ↑ indicates that a higher value is preferable. The
SSIM has values between -1 and 1. The unsigned magnetic flux and AR size are expressed as percentage variations. References: Rombach et al.
(2021), Saharia et al. (2021), Díaz Baso & Asensio Ramos (2018), Rahman et al. (2020).

of the noise that distorts the signal and is defined as:

PSNR = 10 · log10

MAX2
y

MSE

 , (3)

where

MSE =
1

w · h

w−1∑
i=0

h−1∑
j=0

(y(i, j) − ŷ(i, j))2 , (4)

where y represents the ground truth HR image and ŷ represents
the predicted HR image. The higher the PSNR, the better the re-
construction quality. The SSIM measures the similarity between
two images based on three components: luminance, contrast, and
structure.

SSIM(y, ŷ) =
(2µyµŷ +C1)(2σyŷ +C2)

(µ2
y + µ

2
ŷ +C1)(σ2

y + σ
2
ŷ +C2)

, (5)

where µy and µŷ are the mean intensities, σ2
y and σ2

ŷ are the vari-
ances, and σyŷ is the covariance between y and ŷ. The constants
C1 and C2 are used to stabilize the formula. SSIM values range
from -1 to 1, where 1 indicates that the images are identical in
terms of structural similarity.

It is known that PSNR and SSIM tend to favor blurry im-
ages (Dahl et al. 2017; Ledig et al. 2017b; Menon et al. 2020),
meaning that models producing such outputs can achieve high
scores in these metrics. This is misleading as it does not accu-
rately reflect the true quality of model performance. The under-
lying cause of this issue is typically linked to the loss function
used during training, which is often MSE. MSE encourages the
model to predict the average of possible outcomes rather than the
most precise or sharpest result, leading to smoother, less detailed
predictions.

In our case, although MSE appears in the training pro-
cess, its role is fundamentally different compared to classical
super-resolution models. Specifically, in diffusion-based super-
resolution models, MSE is used at each denoising timestep to
predict the added noise, rather than directly optimizing the fi-
nal super-resolution output in pixel space. This distinction al-
lows the model to probabilistically model the distribution of pos-
sible high-resolution outputs, preserving high-frequency details
and reducing the risk of overly smooth predictions. Furthermore,
while classical models produce the output in a single step, diffu-
sion models iteratively refine the prediction over multiple steps,
progressively improving detail quality and mitigating the aver-
aging problem. Moreover, MSE loss has been shown to be op-
timal for DDPM training for added noise prediction (Ho et al.

2020) and also the encoder-decoder architecture used is suited
for MSE loss.

Therefore, to better evaluate the model’s performance, we
use the LPIPS distance, an L2 norm in the latent space of a
pre-trained AlexNet model (Krizhevsky et al. 2012). LPIPS is
valuable because it focuses on perceptual features that humans
consider when evaluating image quality, making it more effec-
tive than traditional metrics to assess image quality in generative
models.

To support the results obtained with the LPIPS distance, we
use the Fréchet Inception Distance (FID). FID measures how
similar the distribution of generated images is to the distribu-
tion of real images by comparing their statistical properties. It
is calculated as the distance between the multivariate Gaussian
distributions of real and generated images in the latent space of
a pre-trained encoder CLIP (Radford et al. 2021):

FID = ∥µ − µ̂∥2 + Tr
(
Σ + Σ̂ − 2

√
ΣΣ̂

)
, (6)

where µ and µ̂ are the means of real and generated images.
Σ and Σ̂ are the covariance matrices of the real and generated
images, and Tr represents the trace of the matrix.

Nevertheless, our primary focus is on the physical accu-
racy of the super-resolved magnetograms rather than solely
their human-perceived aesthetics. For this reason, we use met-
rics such as unsigned magnetic flux and the size of the ac-
tive regions. These metrics are evaluated in terms of percentage
variations relative to the corresponding values in the ground-
truth magnetograms. Ideally, the closer the percentage varia-
tions to 0%, the better the performance of the model. Before
calculating these metrics, the images are first brought back to
their original range in Gauss. We then use the SunPy library
(The SunPy Community et al. 2020) to identify the centres of
the active regions (ARs) through their NOAA (National Oceanic
and Atmospheric Administration) numbers for accurate localisa-
tion. To compute the unsigned and the net flux we sum over the
pixel in Gauss and then multiply by the total area considered.
For the active region size we use the OpenCV library (Bradski
2000) to compute the contour of the ARs. To do this, we first
binarize the image setting as a threshold 300 G, then we find the
contours via the findContours() function from the OpenCV li-
brary and then we count the number of pixels inside to calculate
the approximation of the area in units of number of pixels.
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6. Results and Discussion

Our first experiment focuses on identifying the most effective
model for performing Super-Resolution on LoS magnetograms.
To achieve this, it is essential to isolate the Super-Resolution task
in a controlled environment where the only distinction between
the LR and HR images is their spatial resolution. Therefore, we
conduct this experiment using data obtained from the HMI/SDO
instrument.

Since our goal is to super-resolve MDI/SOHO magne-
tograms to match the resolution of HMI/SDO magnetograms, we
must train a model capable of performing 4x Super-Resolution.
This is because we need to enhance the spatial resolution from
2"/pixel to 0.5"/pixel. We train all the models on aligned crops of
LR and HR magnetograms, thus for each HMI image we take a
random crop of 1024 × 1024 pixels, we downsample it to 256 ×
256 pixels by averaging every 4 pixels and then for the diffusion
model frameworks we upsample it again by just replicating each
pixel 4 times leading to a final image size of 1024 × 1024 pixels
(Figure 1), while for the Enhance and Progressive approach the
input image has a image size of 256 × 256 pixels. For the dif-
fusion framework we upsample it again before passing through
the model because we are using the U-Net (Ronneberger et al.
2015) and the input size and the output size must match.

The architecture of the proposed network is illustrated
in Figure 3. This network integrates the latent diffusion ap-
proach (Rombach et al. 2021) with the residual learning strat-
egy (Li et al. 2021). By combining these approaches, we gain
the computational efficiency of the latent space representation
while also benefiting from the residual domain, where the image
is mostly zero except in areas with important details. This effec-
tively guides the model to focus on the regions that matter most
for accurate prediction.

To train a DDPM in the latent space, it is necessary to have
an already trained encoder-decoder architecture. We use the pre-
trained networks from Rombach et al. (2021). Specifically, the
network used is the VQGAN (Esser et al. 2021), which is the
VQVAE (Vector-Quantized Variational Autoencoder) with the
addition of a patch-wise discriminator loss. The VQGAN em-
ploys three losses to stabilize the latent space and avoid arbitrar-
ily high variance. The first is the use of the reconstruction loss,
ensuring that the decoded images from the VQGAN generator
are close to the original images. The second involves discretiz-
ing the latent space representation with the codebook loss, that
aligns the encoder outputs with specific points in a predefined set
of discrete vectors, called the codebook. Finally, the patch-wise
discriminator loss is used to enhance image quality and make
reconstructions more realistic. This improves both image gen-
eration quality and compression efficiency (van den Oord et al.
2017; Esser et al. 2021; Rombach et al. 2021). For more details
about the VQGAN training process we refer the reader to the
work by Esser et al. (2021).

Given an image x ∈ Rĥ×ŵ×c, the encoder ε encodes x into
a latent representation z = ε(x), where z ∈ Rhz×wz×cz . The en-
coder downsamples the image by a factor α, such that α =
ĥ/hz = ŵ/wz. We test three different downsampling factors
α = 8, 16, 64.

We test the autoencoder networks on the training set de-
scribed in Section 2. As shown in Figure 4, there is a clear
trend where lower values of α result in better performance,
while higher values of α lead to increased errors, consistent with
(Rombach et al. 2021). Given that we are working with input
images of spatial dimensions 1024 × 1024 pixels and prioritise
quality, we choose the best-performing model with α = 8.

To demonstrate that our network benefits from both the resid-
ual and latent diffusion techniques, we compare its performance
by training with and without the latent space approach, as well
as with and without the residual approach, as outlined in Section
4.

The complexity of the architecture differs among the four
diffusion frameworks, depending on whether we are training a
latent diffusion model or working in the pixel domain. In our
network, a key hyperparameter controls the number of channels
in the convolutional layers, directly affecting model complexity.
A larger value increases the number of parameters, enhancing
the model capacity to learn complex features, but it also results
in higher memory consumption and longer computation times.
Conversely, a smaller value reduces the memory and computa-
tional load, making the model more lightweight, but potentially
limiting its ability to capture intricate details, which may re-
duce performance in tasks requiring high accuracy. For the la-
tent diffusion approach, we use a downsampling factor of α = 8,
which reduces the spatial dimensions to 128 × 128 pixels af-
ter compression. In this case, we can set the aforementioned
hyperparameter to 128, while in the pixel domain with images
of 1024 × 1024 pixels, we are constrained to using a maxi-
mum of 8 due to computational limitations. Moreover, in the la-
tent diffusion approach, we can alternate between convolutional
and self-attention layers (Vaswani et al. 2023). Self-attention al-
lows the model to capture global relationships between pixels,
model long-range dependencies, and aggregate features across
the image. In Super-Resolution tasks, this helps the network
concentrate on challenging regions and synthesise details ac-
curately (Su et al. 2025). However, due to computational con-
straints, self-attention layers cannot be used in the pixel domain.

The results of this experiment are shown in Table 1.
We take 250 images from the validation set and use SunPy
(The SunPy Community et al. 2020) to identify the most intense
AR present, as described in Section 5. A 1024×1024 pixel crop
is taken around the AR, downscaled to 256×256 pixels, and then,
depending on the model used (diffusion or not), upscaled back to
1024×1024 pixels as previously mentioned (Figure 1). Further-
more, we super-resolve the 250 test images 10 times each using
the diffusion model frameworks. Since these models are proba-
bilistic, we can assess the stability of their predictions given a
certain input image. This is not possible with the Enhance and
Progressive approaches, as they are deterministic, meaning that
each prediction is always the same given the same input data.

As shown in Table 1, the best-performing model in terms
of PSNR and SSIM is the Progressive model. The Progressive
model (Rahman et al. 2020) is a deterministic model trained us-
ing MSE loss in the pixel space. As explained in Section 3.1,
the Super-Resolution problem is highly ill-posed, meaning that
for each pair of LR and HR images, there are an infinite number
of possible predicted HR images. Training a model with MSE
loss in the pixel space results in an output that averages over
all possible outcomes, leading to blurry predictions, as observed
in Figure 5g and Figure 5h. This blurriness occurs because the
model is uncertain about how to super-resolve fine-grained de-
tails. As explained in Section 5, both PSNR and SSIM tend to
favor models that produce blurry outputs, which explains why
the Progressive model excels in terms of PSNR, and why the
Enhance model also performs well in terms of SSIM.

Following the approach in Saharia et al. (2021), we aim to
test metrics that better align with human perception. Therefore,
we use both the FID and LPIPS distances. LPIPS is a pairwise
metric that evaluates the perceptual similarity between two im-
ages. It focuses on how similar a generated image is to a refer-
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(a) MDI (Input) (b) HMI (Ground Truth)

Fig. 6: Comparison of an MDI and HMI observation. NOOA AR number 11108 from 22 September 2010.

Metric LDM RES (Ours) Enhance
(Díaz Baso & Asensio Ramos
2018)

Progressive (Rahman et al.
2020)

PSNR ↑ 29.23 ± 8 30.02 ± 9 29.71 ± 8
SSIM 0.8 ± 0.05 0.9 ± 0.03 0.8 ± 0.04
LPIPS ↓ 0.08 ± 0.03 0.16 ± 0.04 0.16 ± 0.04
FID ↓ 0.04 ± 0.01 0.7 ± 0.2 2.3 ± 0.3
Unsigned Magnetic Flux (%) 18 ± 13 27.5 ± 26.7 28.5 ± 15.0
AR Size (%) 25 ± 18 35 ± 69 36 ± 38

Table 2: Comparison of MDI to HMI super-resolution results.

Notes. The symbol ↓ indicates that a lower value is preferable for the metric, while ↑ indicates that a higher value is preferable. SSIM ranges
between -1 and 1. Unsigned magnetic flux and AR size are expressed as percentage variations. References: Díaz Baso & Asensio Ramos (2018),
Rahman et al. (2020).

ence image based on deep features, capturing fine details of hu-
man visual perception. On the other hand, the FID assesses both
the quality and diversity of generated images by comparing the
distribution of generated images to that of original images. Un-
like LPIPS, FID captures the overall dataset spread, providing a
broader view of how well the generated samples align with the
real data distribution regarding perceptual features. The LDM
with residual is the best model in terms of FID and LPIPS as
shown in Table 1. This result is also consistent with what can
be inferred by a visual inspection of Figure 5. Nevertheless, we
are interested in more than just the visual quality of the image.
Specifically, we want to assess whether the model can preserve
the underlying physics while improving the image appearance.
Consequently, we use the unsigned magnetic flux and the size
of ARs as metrics. The unsigned magnetic flux is crucial be-
cause its variations are correlated with the structural complexity
of the magnetic field, which is essential for understanding and
predicting energetic events such as flares or coronal mass ejec-
tions (CMEs) (Wiegelmann et al. 2014). It is important that the
model enhances the visual appeal of the images without intro-
ducing artefacts that alter the unsigned magnetic flux. The size
of the AR, which we compute by counting the number of pix-
els inside the contour with the OpenCV library (Bradski 2000),

as described in 5, is an important indicator of potential flares or
other eruptive events (Toriumi & Wang 2019).

The unsigned magnetic flux and the AR size results in Table
1 are presented in forms of percentage variation with respect to
the same value computed on the target magnetograms. To com-
pute those metrics we go back from the predicted values of net-
work between -1 and 1 to the original range -3000 G and +3000
G by reverting the normalisation used. We measure the pixel area
in meters and then sum the pixels to obtain the magnetic field
value multiplied by the underlying area. For both the unsigned
magnetic flux and the size of the AR, the LDM with residuals
performs best. This suggests we are not introducing significant
artefacts that alter the magnetic flux or AR size. Thanks to the
finer details, we can estimate these values more accurately com-
pared to the Progressive and Enhance models, whose results are
affected by the blurriness that can be observed in Figure 5.

Based on the discussion and results, the LDM with resid-
uals is the best overall performer. It excels in preserving the
underlying physical properties, such as unsigned magnetic flux
and AR size, while producing high-quality images with minimal
artefacts. Despite the Progressive model’s strong performance in
metrics like PSNR and SSIM, which favour smoother but blur-
rier outputs, the LDM with residuals outperforms perceptually
important metrics such as FID and LPIPS. These metrics bet-
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(a) Target HMI

(b) Input MDI

(c) LDM residual

(d) Progressive

(e) Enhance

Fig. 7: Prediction example of the MDI to HMI application. NOOA AR number 11108 from 22 September 2010.
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Fig. 8: The image shows the boxplot of the unsigned magnetic
flux metric, whose mean and standard deviation are presented
in Table 2. The main plot displays the data distribution between
the 25th and 75th percentiles, while the subplot highlights all
outliers outside this range. The boxplot is included because, al-
though the mean values in Table 2 are acceptable, the wide con-
fidence intervals make it easier to visually assess the model’s
quality.

Fig. 9: The image shows the boxplot of the active region size
metric, whose mean and standard deviation are presented in Ta-
ble 2. The main plot displays the data distribution between the
25th and 75th percentiles, while the subplot highlights all out-
liers outside this range. The boxplot is included because, al-
though the mean values in Table 2 are acceptable, the wide con-
fidence intervals make it easier to visually assess the model’s
quality.

ter capture fine details and human visual perception, making the
LDM with residuals a more suitable model for Super-Resolution
tasks where visual quality and physical accuracy are critical. Its
ability to better estimate values like the magnetic flux and AR
size without introducing significant artefacts confirms its superi-
ority for this specific application.

7. Super-Resolution of MDI magnetograms

After finding the best model for our ×4 super resolution task in
a controlled environment, where the only difference among the
LR and the HR images is the spatial resolution, we apply this
model to a real case scenario to upscale the MDI/SOHO LoS
magnetograms. This approach allows us to use more data and
extend the training beyond the limited period from May 1, 2010,
to April 11, 2011. By creating synthetic low-resolution/high-
resolution pairs from HMI over a larger time span, we expose the

model to a wider variety of solar features and teach it to super-
resolve these effectively. This is crucial for applying the model
to data from 1995 to 2010, for which we do not have an HMI
counterpart. The input MDI data are normalised as the HMI data
between -1 and 1 but before doing that we scale the MDI data by
1/1.4 following the paper by Liu et al. (2012).

MDI/SOHO has a spatial resolution of 2"/pixel, while
HMI/SDO operates at a higher resolution of 0.5"/pixel. The only
period during which MDI and HMI were both operational was
from May 1, 2010, to April 11, 2011, as outlined in Section 2.
Therefore, we collect paired MDI/HMI data from this period, us-
ing HMI as the ground truth for comparison, with HMI serving
as our HR reference data in this context. We can see an example
of an AR seen by both the instruments in Figure 6.

We finetune our pre-trained residual LDM on pairs of ac-
tual MDI/HMI data, allowing the model to first learn the Super-
Resolution task and then calibrate between the two instruments,
as discussed in (Munoz-Jaramillo et al. 2024). In this setup, the
inputs to our model are MDI data. MDI images have a size of
1024 × 1024 pixels, so we identify the most intense active re-
gions (ARs) using SunPy (The SunPy Community et al. 2020),
take a 256 × 256 pixels crop around them, and then upscale the
image by replicating each pixel 4 times, as described in Section
4.

To finetune our pre-trained residual LDM we use the Low-
Rank Adaption (LoRA) technique Hu et al. (2021) for the self
attention layers and we unfreeze the bottleneck layers of the U-
Net. LoRA is used to finetune the self-attention layers in a more
computationally efficient way. By decomposing the weight ma-
trices into low-rank updates, LoRA allows the model to adapt
effectively without retraining all parameters, saving time and re-
ducing the risk of overfitting. The bottleneck layers in the U-Net
architecture are critical for capturing the compressed representa-
tion of the image. By unfreezing these layers during fine-tuning,
the model can better adapt to the specific characteristics of the
MDI/HMI data and learn more detailed representations specific
to the new MDI instrument. We finetune the residual LDM with
200 MDI/HMI data from May 1, 2010 to August 31, 2010 and
test it on 200 random pairs from September 1, 2010 to April 11,
2011.

We focus our testing on the LDM with residuals, as it is
the best-performing diffusion framework among the four tested.
However, we also compare its performance against the two
deterministic approaches, Enhance and Progressive. Both En-
hance and Progressive models are fine-tuned on the same 200
MDI/HMI pairs as the LDM and are tested on the same 200 pairs
for consistency.

As shown in Table 2, we observe a similar trend to what
is seen in Table 1 for the LR HMI to HR HMI images. The
LDM with residuals performs best in terms of LPIPS, FID, and
the physics-based metrics. However, for pixel-level metrics like
PSNR and SSIM, the Enhance model outperforms the others.
The reason for this, as discussed in Section 4, is that the outputs
of the Progressive and Enhance models tend to be blurrier, as
also evident in Figure 7. In addition, we provide the boxplots of
the unsigned magnetic flux (Figure 8) and the active region size
(Figure 9) metrics to help the reader better understand the model
quality presented in Table 2, since that although the mean values
are acceptable, the confidence intervals are relatively wide.

The goal of this Super-Resolution task is to apply it to all
MDI data from 1995 to 2010, for which we do not have corre-
sponding HMI data, and enhance the spatial resolution. This will
allow us to overcome the resolution limitations of the MDI in-
strument and study past events at a higher resolution, comparable
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Fig. 10: The images represent the amplitude of the Fourier Transform of the Ground Truth image (FT - GT), and of the predictions
obtained with our Latent Diffusion Model (FT - LDM), with the Progressive Model (FT - PROG), and with the Enhance Model
(FT - ENHANCE). The red circles indicate the Fourier frequencies corresponding to a spatial resolution of 2”. This visualization
highlights how each model predicts or blurs high-frequency features, which are crucial for capturing fine details.

to modern instruments. To ensure we can actually extract rele-
vant information through 4x Super-Resolution from the original
2"/pixel data, we test the results in the Fourier domain. Specifi-
cally, we check for the presence of high-frequency signals below
2" in the generated images and assess the model confidence in
these predictions.

We compute for each model prediction the 2D Fast Fourier
Transform (FFT) to convert the spatial domain images into the
frequency domain. The zero frequency component is then shifted
to the centre for easier interpretation. Afterwards, the magni-
tudes of the shifted FFT results are calculated, allowing us to
evaluate and visualise the frequency content of each image. The
red circles indicate frequencies corresponding to 2” resolution
in the physical space. Specifically, high values of the FFT ampli-
tude inside the circles indicate presence of spatial features lager
than 2” in the predicted magnetograms, while large values out-
side the circles indicate presence of features smaller than 2” in
the magnetograms. We show in Figure 10 the amplitude of the
Fourier Transform of the ground truth image and of the mag-
netograms predicted with our LDM, the Progressive model, and
the Enhance model. We saturate the pixel values above a specific
threshold to better visualize the intensities of the high frequency
Fourier components, which lie outside the circle. We observe
that both the Progressive and Enhance models fail to predict the
high-frequency details, in line with the discussion in Section 6.
This is because these models average over all possible solutions
that map a low-resolution image to a high-resolution one, result-
ing in blurred outputs without significant high-frequency con-
tent. In contrast, the LDM with residuals retains high-frequency
details, as the pixel intensities closely resemble those of the
ground truth. This observation is consistent with the results in
Tables 1 and 2, where the FID and LPIPS metrics favour the
LDM with residuals. These metrics, which align well with hu-
man visual perception, effectively capture the presence or ab-
sence of fine details in the images.

However, we aim not only to verify if these high-frequency
features (smaller than 2"), which are absent in the input MDI
map, are predicted but also to assess their associated uncer-
tainties. This analysis is not feasible with classical determin-
istic models. On the contrary with the LDMs we can perform
this evaluation due to their stochastic nature, as it is done in
Ramunno, F. P. et al. (2024b). To visualise the uncertainties of

Fig. 11: The image shows a standard deviation map derived from
10 repeated model predictions. Input image September 22, 2010
on AR 11108. The standard deviation values are expressed in G.

the LDM model, we super-resolve the same MDI magnetogram
ten times, using AR 11108 from September 22, 2010 as an ex-
ample. We then concatenate the ten predictions along the chan-
nel dimension and compute the standard deviation for each pixel.
The resulting image shows pixel-wise uncertainty, where higher
values indicate greater standard deviation, meaning the model is
less confident in its prediction for that pixel. This allows us to
associate a specific uncertainty measure with each pixel (Figure
11).

Additionally, while we aim to predict features smaller than
2", it is important that the model exhibits greater uncertainty
in these predictions compared to the larger features. This is be-
cause we do not want the model to modify the existing features
present in the MDI map. To assess this, we isolate the uncer-
tainties between features larger and smaller than 2" by applying
a Butterworth high-pass filter (Butterworth 1930) to the uncer-
tainty map, which allows us to separate the high-frequency com-
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Fig. 12: Comparison of the uncertainty maps of the features lower than 2" and larger than 2" obtained with the application of the
Butterworth high-pass filter (Butterworth 1930) to the uncertainty map in Figure 11. The values on the colorbar are expressed in G.

ponents (representing features smaller than 2"). We then, thanks
to the filtered uncertainty map, create a mask and overlay it to
the uncertainty map on Figure 11.

We observe in Figure 12 that uncertainties are higher for fea-
tures smaller than 2" compared to features larger than 2". Al-
though uncertainties are also present in the right Figure 12, they
correspond to areas of high-intensity pixels (Figure 6), which
results in a relatively lower uncertainty.

8. Conclusions

In this work, we present a novel method based on Latent Dif-
fusion Models to achieve Super-Resolution for solar magne-
tograms, specifically focusing on the data from the MDI and
the HMI instruments. Our approach successfully addresses the
challenge of enhancing the spatial resolution of MDI data from
2"/pixel to match the 0.5"/pixel resolution of HMI. By leverag-
ing a pre-trained autoencoder to reduce the image size and ap-
plying residual learning, we demonstrated significant improve-
ments in both the visual quality of super resolved images and
the preservation of underlying physical properties, such as the
unsigned magnetic flux and the ARs.

Our experiments (Table 1) showed that the LDM with resid-
uals outperforms deterministic models, such as the Enhance and
Progressive models, in terms of perceptual metrics like LPIPS
and FID, which are crucial for assessing the fine details in high-
resolution images. Moreover, the LDM with residual is easily
generalizable to other instruments as we can see in Table 2 where
we finetune on a small amount of MDI/HMI pairs to apply it for
super resolving MDI magnetograms.

Most importantly, the LDM with residuals can generate an
uncertainty map due to its stochastic behaviour, allowing us to
identify where the model struggles the most (Figure 11). Using
the Fourier transform (Figure 10) and the uncertainty maps, we
demonstrate that our model can super-resolve features smaller
than 2" while also assessing their reliability. This process is es-
sential because, if we cannot predict features smaller than 2", we
are merely enhancing the image aesthetics without adding mean-
ingful information. As shown in Figure 10, deterministic models
fail in this regard.

Furthermore, we demonstrate that the LDM with residuals
does not sacrifice features larger than 2" in order to predict
smaller ones (Figure 12). This is crucial because it ensures that
we are preserving the existing knowledge in the data. Although
the model shows higher uncertainty for smaller features, this is
not problematic. On the contrary, it gives a hint on the presence
of an hidden feature, especially when super resolving pre-2010
data where we lack HMI counterparts. This allows us to study
features that were previously invisible.

However, we acknowledge the potential bias introduced by
fine-tuning on a limited dataset that represents only a specific
phase of the solar cycle (May 2010 – April 2011), predomi-
nantly capturing the rising phase of solar activity. This limited
period restricts the diversity of solar conditions for fine-tuning.
Since super-resolution models rely on learned priors from train-
ing data rather than exact recovery of missing information, bi-
ases can arise. To mitigate this, we employed multiple strate-
gies, including perceptual metrics like FID, uncertainty maps to
assess prediction reliability, and Fourier domain analysis to en-
sure the presence of features smaller than 2” without introducing
artificial structures. Additionally, we tested the model on unseen
MDI data from different periods to confirm robustness beyond
the fine-tuning set. Despite these efforts, some bias related to the
solar cycle phase may remain, which should be considered when
interpreting results.

Applying this technique to MDI data from Solar Cycle 23
opens up exciting possibilities for reanalysing past solar events
with a resolution comparable to modern instruments like HMI.
Furthermore, it is also helpful from a generative point of view
because we can generate images in a smaller pixel resolution
(Ramunno, F. P. et al. 2024b) and then super resolve them. Fu-
ture work will aim to extend this approach to enhance the tem-
poral resolution of MDI, offering a more detailed view of the
dynamic evolution of solar features.

9. Data Availability

Visit this https://github.com/fpramunno/ldm_superresolution for
the code.
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Appendix A: Computational Time Comparison

We trained our latent-space diffusion model for 30 epochs on an
NVIDIA TITAN X GPU, with a total training time of 6 days,
20 hours, 17 minutes, and 26 seconds. For inference, the model
takes approximately 40 seconds to super-resolve a single image
using 1,000 timesteps on the same hardware. To provide context,
we also trained the same diffusion model directly in pixel space,
which required around 8 days for 30 epochs. While the reduction
in training time is relatively modest (about 14.6%), the main ad-
vantage of operating in latent space lies in the significantly im-
proved inference speed. Latent-space inference is approximately
2.5 times faster, reducing the super-resolution time for a single
image from 1 minute and 41 seconds to just 40 seconds. This
highlights the computational efficiency and practicality of using
latent-space diffusion models, particularly for large-scale infer-
ence tasks.
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